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ABSTRACT
We present the first 3D hydrodynamics simulations of the excitation and propagation of internal gravity waves (IGWs) in the
radiative interiors of low-mass stars on the red giant branch (RGB). We use the PPMstar explicit gas dynamics code to simulate
a portion of the convective envelope and all the radiative zone down to the hydrogen-burning shell of a 1.2𝑀⊙ upper RGB star.
We perform simulations for different grid resolutions (7683, 15363 and 28803), a range of driving luminosities, and two different
stratifications (corresponding to the bump luminosity and the tip of the RGB). Our RGB tip simulations can be directly performed
at the nominal luminosity, circumventing the need for extrapolations to lower luminosities. A rich, continuous spectrum of IGWs
is observed, with a significant amount of total power contained at high wavenumbers. By following the time evolution of a passive
dye in the stable layers, we find that IGW mixing in our simulations is weaker than predicted by a simple analytical prescription
based on shear mixing and not efficient enough to explain the missing RGB extra mixing. However, we may be underestimating
the efficiency of IGW mixing given that our simulations include a limited portion of the convective envelope. Quadrupling its
radial extent compared to our fiducial setup increases convective velocities by up to a factor 2 and IGW velocities by up to a factor
4. We also report the formation of a ∼ 0.2𝐻𝑃 penetration zone and evidence that IGWs are excited by plumes that overshoot
into the stable layers.
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1 INTRODUCTION

When exiting the main sequence and entering the red giant branch
(RGB), the outer layers of low-mass stars expand, cool down, and as
a result become more opaque to radiation. This triggers convection
in their envelopes, which brings up to the surface the products of
H fusion. After this “first dredge-up”, no further changes to the
atmospheric abundances of RGB stars are predicted by canonical
stellar evolution theory, since the outer convective envelope remains
isolated from the H-burning shell by a radiative zone that blocks the
transport of species from the H-burning region to the surface.
But spectroscopic observations tell a different story. After the H-

burning shell has crossed the composition discontinuity left at the
maximal extent of the convective envelope during the first dredge-up
(the so-called bump luminosity), the surface composition of nearly
all low-mass RGB stars starts changing again. The 13C and 14N abun-
dances increase, while the 12C and 7Li abundances decrease (Gilroy
1989; Pilachowski et al. 1993; Charbonnel 1994; Gratton et al. 2000;
Mikolaitis et al. 2010; Valenti et al. 2011). Those abundance changes
are the signpost of H fusion and imply that species can be transported
across the radiative zone that separates the H-burning shell from the
convective envelope (e.g., Karakas & Lattanzio 2014).

★ E-mail: sblouin@uvic.ca

The search for the extra mixing process responsible for this trans-
port has been the subject of intense theoretical efforts for decades
(Sweigart & Mengel 1979; Smith & Tout 1992; Wasserburg et al.
1995; Denissenkov & Tout 2000; Chanamé et al. 2005; Palacios
et al. 2006; Busso et al. 2007; Denissenkov & VandenBerg 2003;
Denissenkov et al. 2009; Charbonnel & Lagarde 2010). The most
commonly invoked mechanism is thermohaline mixing (or fingering
convection). This instability is triggered in RGB stars due to 3He
burning in the outskirts of the H-burning shell, which produces a de-
pression in themeanmolecularweight profile 𝜇 (Eggleton et al. 2006;
Charbonnel & Zahn 2007; Cantiello & Langer 2010). The efficiency
of this mixing mechanism crucially depends on the aspect ratio of the
“fingers” formed as a result of the 𝜇 profile inversion. The aspect ra-
tios needed to produce enough mixing far exceed those predicted by
numerical simulations, where more blob-like structures are observed
(Denissenkov 2010; Denissenkov & Merryfield 2011; Traxler et al.
2011; Brown et al. 2013). This suggests that thermohaline mixing
alone is not sufficient to explain the observed extra mixing and the
quest for additional mixing mechanisms is still ongoing.

Internal gravity waves (IGWs) are suspected to be an efficient
species transport mechanism in the radiative zones of stellar in-
teriors (Press 1981; Garcia Lopez & Spruit 1991; Schatzman 1996;
Denissenkov&Tout 2003; Talon&Charbonnel 2005; Schwab 2020).
IGWs are caused by density perturbations in a stably stratified fluid
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and have buoyancy as a restoring force. In stellar interiors, they
are stochastically excited by convective motions at the convective–
radiative interface. Therefore, one can expect IGWs to be generated
at the lower boundary of the convective envelope of RGB stars and
to propagate inside the radiative zone that separates the H-burning
shell from the convective envelope. This could provide an additional
mixing mechanism for RGB stars.
In addition to transporting species, IGWs may also transport an-

gular momentum (Ringot 1998; Kumar et al. 1999; Talon et al. 2002;
Rogers et al. 2013; Pinçon et al. 2017). Asteroseismological obser-
vations have revealed that the cores of RGB stars spin much faster
than their envelopes (Beck et al. 2012, 2014; Deheuvels et al. 2012,
2014), but also much slower than if there was no additional angular
momentum transport mechanism coupling the core to the envelope
(Eggenberger et al. 2012; Marques et al. 2013; Cantiello et al. 2014).
Current evolutionary models fail to predict this (relatively) slow rota-
tion: an additional process that extracts angular momentum from the
core is needed. IGWs (and mixed modes, Belkacem et al. 2015) have
been considered as a solution to this problem (Fuller et al. 2014).
Due to the complex interplay between convective motions and the

excitation and propagation of IGWs, detailed hydrodynamics simu-
lations are required to accurately determine the properties of IGWs
in stellar interiors and ultimately assess their impact on stellar evo-
lution. Analytical approaches are also possible (Kumar et al. 1999;
Montalbán & Schatzman 2000; Lecoanet & Quataert 2013), but they
inevitably rely on a number of assumptions (e.g., the wave excitation
mechanism, the shape of the power spectrum).Multi-dimensional hy-
drodynamics simulations of IGWs excitation and propagation have
been performed for main-sequence stars (Rogers &Glatzmaier 2005;
Dintrans et al. 2005; Rogers et al. 2013; Brun et al. 2011; Alvan et al.
2014, 2015; Edelmann et al. 2019; Horst et al. 2020; Ratnasingam
et al. 2020; Le Saux et al. 2022; Herwig et al. 2023b; Thompson
et al. 2023), but to our knowledge no results currently exist for RGB
stars. In this work, we present the first hydrodynamics simulations of
IGW excitation and propagation in RGB stars. We use the PPMstar
gas dynamics code to perform three-dimensional, full-sphere, high-
resolution simulations of two different phases in the evolution of a
1.2𝑀⊙ star on the RGB. Based on these simulations, we present a
first estimate of the mixing enabled by IGWs in RGB stars.
In Section 2, we describe the MESA models that we use as base

states for our hydrodynamics simulations and explain how the latter
are set up in PPMstar. We then discuss the overall properties of our
simulations in Section 3, where we present high-resolution render-
ings of our simulations as well as radial profiles and power spectra.
Mixing by IGWs is investigated in Section 4 using two different
approaches. Section 5 is devoted to the influence of the size of the
convective envelope on our results and Section 6 to the properties
of the convective boundary. Finally, our conclusions are stated in
Section 7.

2 METHODS

2.1 MESA models

We use MESA version 7624 (Paxton et al. 2011, 2013, 2015) to gener-
ate the initial states of our hydrodynamics simulations.We calculated
the evolution of a 1.2𝑀⊙ star from the pre-main sequence to the tip
of the RGB. We assume an initial metallicity of [Fe/H] = −0.3,
and the mixing length theory (MLT) is used, with mixing length
ℓMLT = 2𝐻𝑃 (where 𝐻𝑃 is the pressure scale height). Figure 1 dis-
plays the evolution of our model from the zero-age main sequence to
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Figure 1. Hertzsprung–Russell diagram of our 1.2𝑀⊙ MESAmodel from the
zero-age main sequence to the tip of the RGB. The two phases simulated in
this work are marked with red circles.

the tip of the RGB in the theoretical Hertzsprung–Russell diagram.
Two circles identify the two phases simulated in 3D in this work. The
first one is just after the bump luminosity at log 𝐿/𝐿⊙ = 2.00 (this is
our “bump setup”), and the second one is very close to the tip of the
RGB at log 𝐿/𝐿⊙ = 3.33 (this is our “tip setup”).
Figure 2 shows the Kippenhahn diagram of our MESAmodel along

the RGB. The convective envelope is in grey and the H-burning shell
is displayed as a thin blue line; the narrow region in between is the
radiative zone where IGWs propagate. Two dashed vertical lines in-
dicate the models that correspond to our bump and tip setups and the
thick solid lines show the portion of those models that we actually
simulate in 3D. It would be prohibitively expensive to simulate the
whole star and choices have to be made regarding which regions to
include. For both setups, we omit the inner 𝑅 < 40Mm, which cor-
responds to truncating our setups just above the H-burning shell. The
equation of state currently included in PPMstar does not account for
the degeneracy pressure that becomes prominent in the dense inner
core, and in any case this region is not strictly needed to study IGWs
in the radiative zone above. Furthermore, recent 2D hydrodynamics
simulations of a Sun-like star show that the location of the inner
simulation boundary has a negligible effect on the IGWs (Vlaykov
et al. 2022); a similar behaviour can be expected for the RGB. The
mass contained inside this inner 40Mm is taken into account when
computing the gravitational acceleration in our 3D simulations. For
the upper boundary, we adopt a maximum radius of 𝑅max = 900Mm
for our fiducial simulations, which represents only 8% of the stellar
radius for the bump setup and 1% for the tip setup. This is enough
to include all the radiative zone and a portion of the convective en-
velope. However, we recognize that artificially blocking the flow at
900Mm (PPMstar uses reflective boundary conditions) alters the
convective motions in the envelope by impeding the development of
large-scale convective modes. But extending our simulation sphere
further out would degrade the grid resolution in the radiative zone
where the IGWs propagate, and we thus settled on 𝑅 ≤ 900Mm
as a compromise between those two effects. We will explore how
including a larger envelope affects our results in Section 5.
To initialize the 3D hydrodynamics simulations, we only require

(1) the mass contained within the inner simulation radius (i.e., within
𝑅 < 40Mm), (2) the pressure at the inner simulation radius, and (3)
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Figure 2. Kippenhahn diagram of our 1.2𝑀⊙ MESA model on the RGB. H
burning takes place in a shell represented by the thin blue line. The narrow
region above this H-burning shell is the radiative zonewhere IGWs are excited
by convective motions in the convective envelope above (in grey). The two
RGB phases examined in this work are marked by the vertical dashed lines.
In both cases, a small solid line indicates the actual mass included in our 3D
simulations.
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Figure 3.Brunt–Väisälä frequency 𝑁 as a function of radius for our two RGB
setups. The MESA profiles (solid black lines) are compared to the 𝑁 profiles
used as base states of our PPMstar simulations (red dashed lines). The vertical
dotted line indicates the location of the inner simulation boundary.

the entropy profile up to the outer simulation radius. From those
quantities, the initial pressure (𝑃), density (𝜌), temperature (𝑇), and
mass (𝑀𝑟 ) stratifications can be recovered by integrating the hydro-
static equilibrium equation from the inner boundary. Note that there
is no composition gradient in our RGB setups, including across the
convective boundary, meaning that only one fluid with the appropri-
ate 𝜇 is needed in our 3D simulations. As in Herwig et al. (2023b),
we smooth the MESA entropy profile to remove small-scale noise and
we force a constant entropy in the convective envelope. Figure 3
compares the Brunt–Väisälä frequency 𝑁 obtained by this procedure
to the original MESA profile. Only at the convective boundary (when
𝑁 → 0) is there a small discrepancy between both profiles due to
our smoothing procedure.

Table 1. Summary of simulations used in this paper.

ID setup 𝐿/𝐿★ grid 𝑅max (Mm) 𝑡 (h) # dumps

X17 bump 104 7683 900 797 308
X18 bump 103.5 7683 900 789 305
X14 bump 103 7683 900 1058 419
X22 bump 103 15363 900 831 480
X21 bump 102.5 7683 900 1552 600
X15 bump 102 7683 900 935 723
X16 bump 10 7683 900 1497 579
X24 tip 1 7683 900 1695 1280
X25 tip 1 15363 1800 1352 510
X26 tip 1 15363 900 682 515
X30 tip 1 28803 1100 552 700
X32† tip 1 7683 900 850 642
X33† tip 1 15363 900 633 478

† No radiation diffusion (𝐾 = 0)

2.2 PPMstar simulations

We use the PPMstar explicit gas dynamics code (Woodward et al.
2015; Jones et al. 2017; Andrassy et al. 2020; Herwig et al. 2023b;
Mao et al. 2023; Woodward et al. 2023) to perform our 3D hydro-
dynamics simulations. As described in Mao et al. (2023), a more
realistic equation of state that includes both the ideal gas pressure
and the radiation pressure is now implemented in PPMstar. Contri-
butions from electron degeneracy pressure and Coulomb interactions
remain negligible in the regions we simulate (𝑅 ≥ 40Mm). In addi-
tion, radiation diffusion is now also included (Mao et al. 2023). The
Rosseland mean opacity is calculated using polynomial fits that are
generated before each run by fitting OPAL opacity tables (Iglesias
& Rogers 1996) within the restricted 𝜌–𝑇 domain relevant to each
setup. Here, those fits depend only on 𝜌 and 𝑇 since the composi-
tion is uniform throughout the simulated region. We opted for this
approach instead of a direct interpolation of the OPAL tables in the
interest of code execution speed.
Convection is driven by cooling down (i.e., removing heat) from

the uppermost 50Mm. The rate at which heat is removed corresponds
to the luminosity that we are simulating (which is not necessarily the
same as the nominal stellar luminosity as discussed in the next para-
graph). In addition, we inject heat at the same rate in the first 20Mm
above the inner boundary of our simulations. This is to compensate
the loss of heat at the upper boundary with the aim of keeping the
thermal content of the star constant over the simulation. This driv-
ing strategy closely imitates energy transport in the real star. Heat is
produced close to the centre in the H-burning shell, which is what
our heating term at the inner simulation boundary mimics. Similarly,
convection carries heat all the way to the surface in a real star, which
is what our cooling term at the outer simulation boundary simulates.
The explicit scheme used by PPMstar sets a lower limit on the

Mach numbers that can be simulated. A very low Mach number
flow would demand prohibitively small grid cells. Consequently, for
our bump setup, we cannot perform the simulations at the nominal
luminosity 𝐿★. Our fiducial bump simulations use 𝐿 = 1000 𝐿★
to drive the convection zone. To extrapolate our results to nominal
heating, we perform a series of simulations with different luminosity
boost factors as indicated in Table 1. Note that the radiative diffusivity
𝐾 is also increased by the same factor so that the energy transported
by radiation scales as the driving luminosity (in order to conserve
energy).
The tip setup is different. Thanks to its higher luminosity and

different stratification, the Mach numbers in its convection zone
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(Ma ≃ 0.010 − 0.015) are high enough that the star can be simu-
lated at nominal luminosity. This is also true for the IGWs in the
stable layers. This gives our RGB tip simulations an exceptional de-
gree of fidelity, providing solutions of the full conservation equations
in 3D and over the 4𝜋 sphere, at the actual stellar luminosity, and
including radiation diffusion with realistic opacities. To our knowl-
edge, these are the first stellar interior hydrodynamic simulations of
this kind. The one approximation we are making is that only a small
portion of the envelope is included. This can admittedly have a large
impact both on the convective and IGWmotions (e.g., Vlaykov et al.
2022). We return to this question in Section 5.
To demonstrate that the tip setup can reliably be simulated at nom-

inal heating, we show in Figure 4 how, for the bump setup, the rms
velocity in the convective envelope and in the stable layers scales
as a function of the boost factor applied to the heating luminosity.
The convective velocities follow a well-defined 𝐿1/3 scaling relation,
as established in previous 3D hydrodynamics simulations (Porter &
Woodward 2000; Müller et al. 2016; Jones et al. 2017; Baraffe et al.
2021; Herwig et al. 2023b). In the stable layers, we observe the
same 𝐿1/3 dependence down to at least 𝐿 = 102.5 𝐿★ (this differs
from the results of Herwig et al. 2023b, a point to which we return
in Section 4.1.2). This suggests that there are no numerical conver-
gence issues at those luminosities. The smallest velocity that still
adheres to the scaling law is |𝑈 | ≃ 0.1 km/s (𝐿 = 102.5 𝐿★ in the
bottom panel of Figure 4), which corresponds to a Mach number of
≃ 0.0003. As shown in Figure A1, the Mach numbers of our RGB
tip simulations are above that threshold for 𝑅 ≳ 300Mm. This in-
dicates that our nominal-heating RGB tip simulations can be trusted
everywhere except in the innermost portion of the radiative interior.
Finally, note that this analysis (Figure 4) was performed with the
lowest-resolution grid (7683) used in this work. This is therefore a
pessimistic assessment of convergence errors as the scaling laws are
expected to hold down to lower luminosities and smaller velocities
when the grid resolution is increased (e.g., Figure 32 of Herwig et al.
2023b).
Our simulations are performed on Cartesian grids of 7683, 15363

or 28803 and run on average for 𝑡 ≃ 1000 h of star time, as indicated
in Table 1. With a characteristic convective turnover timescale of
1 day, the simulations are long enough to determine the flow prop-
erties after eliminating the initial transient phase of a few hundred
hours (Figure 5). We note however that our simulations are not long
enough to achieve a thermal equilibrium state. Since the gas dynam-
ics in the 3D simulations is different than what is assumed in the
initial 1D MLT-based MESA stratifications, our setups are inevitably
out of thermal equilibrium. This results in the gradual migration of
the convective boundary. Furthermore, in all our simulations except
X30, our choice of external boundary condition also leads to a spuri-
ous migration of the Schwarzschild boundary (see Section 4.2). For
those reasons, the convective boundary does not remain at its orig-
inal location shown in Figure 3. Finding configurations that are in
equilibriumwhen simulated with 3D hydrodynamics is an interesting
endeavour in itself, but one that is outside the scope of this work.
The time steps are adjusted as to maintain a Courant number of

0.85. In the case of our 7683-grid simulations, this corresponds to
Δ𝑡 = 3.2 s for the bump setup and 2.6 s for the tip setup (Δ𝑡 is half
that when using a 15363 grid with the same 𝑅max). A detailed output
of the simulations (or dump) is produced every 2.6 h for the bump
setup and every 1.3 h for the fiducial tip setup. The content of those
dumps is detailed in Herwig et al. (2023b).
PPMstar’s use of Cartesian coordinates optimizes numerical ac-

curacy for a general fluid flow problem. It gives rise to a simple and
highly effective design in which the computation proceeds in sym-
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Figure 4. Root mean square velocity in the convection zone (top panel) and
in the stable layers 200Mm ≃ 1𝐻𝑃 below the convective boundary (bottom
panel) as a function of the boost factor applied to the luminosity. In each case
except X17, the vorticity is averaged over the last 100 dumps. For X17, earlier
dumps (100 − 120, 𝑡 = 260 to 310 h) are used to prevent selecting dumps
where the convective boundary has moved below 𝑅 = 400Mm and the flow
velocity is tainted by the numerical artifacts in the innermost regions of the
simulation. Those runs are all for the RGB bump setup and a 7683 grid.

metrized sequences of 1D passes in the three coordinate directions
(i.e., directional operator splitting). One consequence of our coordi-
nate choice is that the application of boundary conditions becomes
more difficult. Boundary conditions are currently implemented at
specific radii (here, an inner boundary at 40Mm and an outer bound-
ary at 𝑅max), placed well away from the main region of interest to
minimize potential numerical artifacts.We approximate these bound-
ing spheres by the nearest set of cubical grid cell faces, which implies
that these spheres are ragged at the scale of the grid. We impose a
reflecting boundary condition at the bounding spheres using ghost
cells that mirror the cells across the bounding surfaces. This is done
in each 1D pass, and in each such pass the bounding surface is per-
pendicular to the direction of the pass, but it is not perpendicular to
the gravitational acceleration vector. For convenience, we therefore
smoothly turn off gravity beginning a few grid cell widths in radius
before the bounding sphere is reached, allowing us to implement a
simple boundary condition in each 1D pass. The downside of this
approach is the introduction of a very thin layer next to the bound-
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Figure 5.Time evolution of the spherically averaged radial velocity amplitude
for runs X14, X22, X24, and X26 (see Table 1). The top panel shows |𝑈𝑟 |
0.5𝐻𝑃 above the convective boundary and the bottom panel shows the same
quantity 0.5𝐻𝑃 below the convective boundary (𝐻𝑃 ≃ 200Mm at the
convective boundary).

ary where gravitational acceleration smoothly drops to zero. This
approach has so far caused no noticeable problems (e.g., Woodward
et al. 2015; Jones et al. 2017; Andrassy et al. 2020; Herwig et al.
2023b), but the current context is trickier because the reflection of
IGWs at the inner boundary couldmatter.We find that over the course
of the computation, motions are set going and grow in the thin layer
next to the inner boundary. However, these do not come near to the
observed IGWmotions that are set in motion by the convective enve-
lope (as we will see in Section 3.4, radiative damping dissipates the
IGWs well before they reach the inner boundary), and they should
not affect the computed results in the regions of interest.

3 MAIN PROPERTIES OF THE FLOW

3.1 Centre-plane slice renderings

To visualize the important features of our simulations, Figures 6
and 7 show renderings of the tangential velocity magnitude |𝑈𝑡 |,
radial velocity 𝑈𝑟 , and vorticity magnitude |∇ × 𝑈 | for dump 390
(𝑡 = 672 h) of X22 (𝐿 = 1000𝐿★, 15363 grid). Those renderings
display a centre-plane slice of the full 3D simulation sphere. In all

three renderings, the convective envelope is easily distinguished from
the radiative zone. The former is characterized by large velocities
and is highly turbulent as revealed by the fine-scale structures in
the vorticity rendering. In contrast, the radiative zone shows slower,
more organized, wave-like flows. As we will see in Section 3.3, the
almost circular structures visible in the |𝑈𝑡 | and vorticity renderings
correspond to the superposition of several IGWswith different spatial
and temporal frequencies.
While the behaviour of our simulations is most easily visualized

in the movies available at https://www.ppmstar.org, those static
renderings nevertheless offer important insights. The rendering of the
radial velocity component reveals that the convective envelope hosts
several convective cells, with alternating downdrafts and updrafts
(shown as an alternation of blue and red-orange colours) as we rotate
around the sphere. This is reminiscent of the flow patterns observed
in PPMstar simulations of He-shell flash convection in rapidly ac-
creting white dwarfs (Stephens et al. 2021) and of O-burning shells in
massive stars (Jones et al. 2017; Andrassy et al. 2020). However, this
is very different from the behaviour found in our recent simulations of
core convection in non-rotating massive main sequence stars, where
a single dipole mode dominates the convective flow (Herwig et al.
2023b). This also differs from the results of Brun & Palacios (2009),
whose anelastic 3D simulations of the envelope of slowly rotating
RGB stars are also dominated by a large dipole mode, as previously
established by Porter et al. (2000). We attribute this difference to
the artificial boundary imposed on the flow at 900Mm. The largest-
scale mode that develops in the convection zone is limited by the
vertical extent of the convection zone, and therefore a large dipole
mode is prevented from forming in our simulations. We investigate
this question in Section 5.
The tangential velocity rendering displays a few high-|𝑈𝑡 | (dark

red) structures inside the convection zone that follow the contour of
the convective boundary. Those structures are caused by the inward
moving flows that collide with the convective–radiative interface.
Unable to continue inward, those flows are forced to turn and continue
in a perpendicular direction, thereby creating high-|𝑈𝑡 | structures.
For example, the downdraft seen just a few degrees East from North
in the 𝑈𝑟 rendering of Figure 6 creates a high-|𝑈𝑡 | double wedge
structure where it hits the convective boundary. This behaviour is
entirely analogous to the one described in Herwig et al. (2023b) for
core convection in massive main sequence stars. In Section 6, we
will see that it is where those flows impact (or overshoot past) the
convective boundary that waves are excited in the radiative zone.
The |𝑈𝑡 |, 𝑈𝑟 and |∇ ×𝑈 | renderings of the RGB tip simulations are
qualitatively similar to those shown for the bump setup in Figures 6
and 7. We omit them for conciseness, but they are available, along
with high-resolution movies, at https://www.ppmstar.org.

3.2 Radial profiles

Now that the overall morphology of the flow has been established,
we investigate its properties more quantitatively. Figure 8 displays
radial profiles of |𝑈𝑡 | and |𝑈𝑟 | for both the bump and tip setups (see
also Figure A1, which displays the same quantities but this time in
terms of Mach numbers). We omit the 40Mm < 𝑅 < 200Mm re-
gion in this and subsequent radial profile figures as the behaviour of
the flow in this region is tainted by artifacts introduced by the inner
boundary conditions of our simulations (Section 2.2). The results
of both the 7683 and 15363 simulations are shown and the agree-
ment between both grid resolutions is excellent. Above 300Mm, the
difference never exceeds 20%. Larger discrepancies are apparent at
𝑅 < 300Mm for the tip setup. This can be at least partially explained
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Figure 6. Centre-plane slice rendering of run X22 (bump setup, 15363 grid) at dump 390 (𝑡 = 672 h). Left: magnitude of the tangential velocity component
|𝑈𝑡 | (i.e., perpendicular to the radial direction), with dark blue, turquoise, yellow, red, and dark red representing a sequence of increasing velocities. Right:
radial velocity 𝑈𝑟 , with blue colours representing inward-moving flows and red-orange colours outward-moving flows. Those renderings were generated to
qualitatively visualize the important features of our simulations. The inner 120Mm were masked to remove the artifacts introduced by the inner simulation
boundary. High-resolution movies are available at https://www.ppmstar.org.

Figure 7. Centre-plane slice rendering of the vorticity magnitude (same
colour sequence as for |𝑈𝑡 | in Figure 6) for run X22 at dump 390 (𝑡 = 672 h).
The inner 120Mm were masked to remove the artifacts introduced by the
inner simulation boundary.

by the fact that a smaller grid cell size is required to satisfactorily
resolve the slower flow at small radii (consistent with our discussion

of Figure 4), but as we will see numerical heat diffusion also plays a
role.

In the convective envelope, the radial and tangential velocity com-
ponents have similar magnitudes, except near the convective bound-
ary where |𝑈𝑡 | > |𝑈𝑟 |. This is the result of the turning of the flow
when downdrafts collide against the convective boundary, as de-
scribed in the previous section and illustrated in Figure 6. Inside the
radiative zone, the tangential component of the velocity remains 2 to
8 times larger than the radial component. This qualitatively matches
the expected behaviour for a flow dominated by IGWs, since these
waves have higher amplitudes in the tangential direction.

Figure 9 shows radial profiles of the vorticity magnitude, |∇ ×𝑈 |,
for both setups and two grid resolutions. As expected, the vorticity is
much higher in the turbulent convective envelope than in the stable
layers dominated by wave-like flows. In the convective envelope,
doubling the resolution results in a ≃ 50% increase of the vorticity.
A similar increase was also observed in the convective cores of
our recent PPMstar simulations of massive main sequence stars
(Figure 29 of Herwig et al. 2023b). This is due to the fact that the
turbulent cascade in the convective envelope extends to the smallest
scales resolved by the simulation grid. As will be shown in Figure A2
(see Section 3.3), doubling the resolution allows this cascade to
extend to smaller spatial scales and therefore increases the vorticity.
This behaviour is to be contrasted with what is observed in the stable
layers. For the bump setup, the vorticity profiles obtained at 7683 and
15363 are in excellent agreement. This indicates good convergence
with respect to the grid resolution: there are no smaller-scale motions
to be resolved. The tip setup behaves somewhat differently as we
find progressively larger discrepancies between both grid resolutions
below 400Mm.
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Figure 8. Rms radial and tangential velocity for the bump (top panel, X14
and X22) and tip setups (bottom panel, X24 and X26) at 𝑡 = 672 h (same
time as in Figure 6). Profiles calculated from runs on a 7683 grid are shown
as solid lines; those from 15363 grids are shown as dashed lines. The vertical
dotted lines indicate the location of the convective boundaries, determined
by finding the location of the maximum𝑈𝑡 gradient as in Jones et al. (2017).
Note that the X14 and X22 simulations shown on the top panel were driven
with 1000× the nominal luminosity (see Table 1).

3.3 Power spectra

To characterize the spatial structure of the flow, we show in Figure 10
the power spectra of |𝑈 | at different radii for runsX22 andX26 (15363
grid, bump and tip setups, respectively). In those figures, the power
is decomposed into spherical harmonics, each represented by their
angular degree (or spherical wavenumber) ℓ.1 The three largest radii
are in the convection zone, the four smallest are in the stable layers,
and 𝑅 = 500Mmis in the convection zone forX22 and in the radiative
zone for X26 (the convective boundary is at 𝑅𝑐 ≃ 470Mm for X22
and at 𝑅𝑐 ≃ 580Mm for X26). Themaximum ℓ value shown in those
spectra is set by the highest-degree spherical harmonics that can be
resolved given the angular resolution of the Cartesian simulation grid

1 The angular degree ℓ is related to the horizontal wavenumber 𝑘ℎ by 𝑘ℎ =√︁
ℓ (ℓ + 1)/𝑅.
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Figure 9. Magnitude of the vorticity for the bump (green) and tip (brown)
setups and for runs on 7683 (solid lines) and 15363 (dashed lines) grids.
The vorticity profiles are averaged overs dumps 400 to 420. The simulations
shown here are X14, X22, X24 and X26. Note that the bump simulations
displayed here were driven with 1000× the nominal luminosity.

when projected on a sphere at a given radius. Note that the spectra
are calculated from the filtered briquette data output (Stephens et al.
2021), for which the grid size in each direction is four times smaller
than the computational grid. In the convection zone, we recover the
expected Kolmogorov spectrum at small spatial scales. The spectra
depart from the Kolmogorov ℓ−5/3 scaling at ℓ ≲ 4, which reflects
the fact that the ℓ = 1 and 2 modes are not able to fully develop
in the relatively small envelope included in our simulations (but
would presumably be dominating the power in the larger convective
envelope of a real RGB star, Porter et al. 2000; Brun & Palacios
2009). Note that we find the same results if we use a coarser grid
resolution, as shown in Figure A2. The only difference is that in the
high-ℓ limit the spectrum departs from the ℓ−5/3 scaling at lower
ℓ since smaller-scale turbulence is not resolved, consistent with our
discussion of Figure 9 in Section 3.2.
In this Section, it will become clear from the properties of the

flow, and in particular from the frequencies containing most of the
power, that the stable layers are dominated by IGW motions. This
IGW-dominated region has a very different spectrum compared to the
unstable layers. First, the total power decreases rapidly as we move
away from the convective boundary. This signals a strong damping of
the IGWs (also visible in Figures 8–9), which we attribute to radia-
tive diffusion in Section 3.4. Secondly, for both setups, the spectrum
resembles a broken power law with a flat portion up to ℓ ≃ 10 − 40,
followed by a very sharp (∼ ℓ−7) decline at higher wavenumbers.
As with the convective layers, the general shape of the spectrum is
insensitive to the grid resolution (Figure A2). From this observation,
we can infer that the shift in the ℓ value where the spectrum goes from
flat to rapidly decreasing is not simply due to a change in the effective
angular grid resolution with 𝑅. As they travel toward the centre of
the star, the high-ℓ waves are more readily damped than their low-
ℓ counterparts. This IGW spectrum has both important similarities
and differences with previous hydrodynamics simulations. The steep
power law at large ℓ is reminiscent of the Alvan et al. (2014) simu-
lations of IGWs in the Sun (where the resonant cavity is similar to
that considered here, with IGWs propagating in a radiative zone sur-
rounded by a convective envelope) and of themassive main-sequence
star simulations of Rogers et al. (2013). The former find a steep ∼ −5
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Figure 10. Power spectrum of |𝑈 | at different radii for X22 (bump setup,
15363 grid) andX26 (tip setup, 15363 grid). The power is binned as a function
of the spherical harmonics angular degree ℓ. The four largest radii are in the
convective envelope and the four smallest are in the radiative zone. The spectra
were computed by averaging over the last 100 dumps of the simulations. Note
that the sole purpose of the symbols on the lines is to help distinguish the
curves from one another.

to −7 power law (see their Figure 15) and the latter find a similarly
steep ∼ −4 to −6 power law at large ℓ (see their Figure 6). However,
a major difference is that both Alvan et al. (2014) and Rogers et al.
(2013) find a spectrum that is monotonically decreasing with respect
to ℓ, whereas we obtain a flat spectrum at low ℓ.
We note that the comparison of the IGW spectra of Figure 10 to

those presented in Rogers et al. (2013) and Alvan et al. (2014) is not
rigorous as in those works the IGW spectrum is separated into its
spatial and temporal dependencies,

𝐸 (ℓ, 𝜈) = 𝑓 (ℓ)𝑔(𝜈). (1)

In Figure 10, the dependence on the temporal frequency 𝜈 was ig-
nored but nevertheless affects the power spectra since the spherical
wavenumber ℓ is coupled to 𝜈 through a dispersion relation. To in-
dependently study the dependencies on ℓ and 𝜈, Rogers et al. (2013)
and Alvan et al. (2014) decompose their spectra into the form given
by Equation (1) using singular value decomposition. Naturally, the
spectrum cannot be entirely separated as in Equation (1), and in
our case we found that the singular value decomposition led to a
poor representation of the full spectrum. We therefore opted not to
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Figure 11. Identical to Figure 10, but this time only the radial velocity
component is considered in the calculation of the power spectra.

use singular value decomposition to present our IGW spectra. The
same considerations apply to the temporal frequency power spectra
presented below.
In Figure 10, we showed the spectra of the total power, that is,

due to displacements both in the radial and horizontal directions.
It is instructive to compare those spectra to spectra computed by
considering only the radial velocity component (Figure 11). Themost
important difference is that instead of being flat at low ℓ, the𝑈𝑟 IGW
spectra instead increase up to ℓ ≃ 10−40. This behaviour is expected.
For IGWs, the ratio 𝑈𝑟/𝑈𝑡 increases with frequency (see Herwig
et al. 2023b) as the waves approach the Brunt–Väisälä frequency
and the vertical motions become more important compared to the
horizontal motions. This can explain the positive slope observed in
Figure 11. A similar trend is also observed in the IGW spectra of our
massive main sequence stars simulations (Figure 19 of Herwig et al.
2023b) and in recent 3D simulations of late-type F stars (Breton et al.
2022, Figure 8).
In Figure 12 we now show the power spectra for the same radii

as in Figures 10 and 11, but this time in the temporal frequency
space. The spectra are truncated at 𝜈 = 80 𝜇Hz (bump setup) and
𝜈 = 104 𝜇Hz (tip setup), which correspond to the Nyquist cut-off
frequencies given the time interval that separates each dump in our
simulations (i.e., higher frequency modes cannot be resolved). To be
clear, higher frequencies are resolved in the simulations themselves,
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Figure 12. Frequency power spectrum at different radii for X22 (bump setup,
15363 grid) and X26 (tip setup, 15363 grid). The spectra were computed by
considering the last 100 dumps of the simulations.

but the detailed outputs that allow us to reconstruct the power spectra
are written to disk only every ∼ 2000 time steps. In the stable layers,
the spectra are relatively flat, although for the tip setup there is a
noticeable decrease of the power at high frequencies. This high-
frequency quenching is more pronounced close to the convective
boundary. This is consistent with these waves being IGWs. IGWs
can only propagate when their frequencies are smaller than the local
Brunt–Väisälä frequency. Here, the relative amount of power at high
frequencies grows as we move inward and 𝑁 increases (Figure 3).
It is instructive to compare the frequencies that contain most of

the IGW power to the convective frequency 𝜈𝑐 at the bottom of the
envelope. The convective turnover timescale is not a precisely defined
quantity, but as the convective cells occupy the maximum space
available to them in the envelope, we can estimate it by taking the
thickness of the envelope (≃ 400Mm for X22 and 300Mm for X26)
and dividing it by the average convective velocity (|𝑈 | ≃ 5 km s−1
for X22 and 3 km s−1 for X26). This yields a convective turnover
timescale of 22 h (𝜈𝑐 ≃ 13 𝜇Hz) for the bump setup and 28 h (𝜈𝑐 ≃
10 𝜇Hz) for the tip setup. Figure 12 shows that a large fraction of the
IGW power is contained at frequencies that exceed 𝜈𝑐 . This result
is consistent with the fact that the power spectra in the convective
envelope are flat (Figure 12). If there is no correlation between the
convective turnover timescale and the convective spectrum, then we

also expect to observe no correlation between the convective turnover
timescale and the IGW spectrum.
Comparing our wave spectra to asteroseismological observations

of RGB stars would be interesting, but this exercise is complicated
by the fact that the IGWs propagating in the radiative interior are
coupled with pressure modes in the envelope (those are known as
“mixed” modes, Aerts et al. 2010; Hekker & Christensen-Dalsgaard
2017). Because of this and given the truncation of the envelope
in our simulations, we cannot make a direct comparison between
the frequencies of the mixed modes detected in upper RGB stars
and the frequency spectra of Figure 12. Nonetheless, we note that
the frequency at maximum oscillation power for mixed modes in a
1.2𝑀⊙ RGB star at the bump luminosity, 𝜈max ≃ 40 𝜇Hz (Figure 1
of Khan et al. 2018), is within the range of frequencies where IGWs
are excited in our simulations (Figure 12).
To conclude our analysis of the wave spectra, we show in Figure 13

power spectra of the radial velocity component as a function of both
the angular degree and the frequency for an RGB tip simulation
(X24). We use our longest simulation for this analysis in order to
attain a finer frequency sampling in the Fourier decomposition. The
power spectrum in the convective envelope (top panel) differs greatly
from the spectrum obtained in the stable layers ≃ 0.8𝐻𝑃 below
the convective boundary (bottom panel). In the convection zone,
the power spectrum is very smooth and has no specific features, as
expected for turbulence. In the IGW-dominated region, we see amore
distinctive power distribution, with no power at high frequencies (due
to the quenching of IGWs with frequencies exceeding 𝑁) and in the
low-frequency, high-ℓ region of the diagram. Themost striking aspect
of this wave spectrum is it blurriness. In contrast, hydrodynamics
simulations of IGWs in stellar radiative interiors usually yield spectra
where the power is predominantly contained in a set of discrete, well-
defined ridges in the ℓ − 𝜈 space (Alvan et al. 2014, 2015; Rogers
et al. 2013; Horst et al. 2020; Thompson et al. 2023), with each ridge
corresponding to a specific radial order of standing IGW modes (or
𝑔 modes). The absence of such ridges in Figure 13 suggests that
standing modes are not formed in our simulations or, in other words,
that the mode lifetime is very short.
For standing waves to form, two progressive (or travelling) IGWs

have to constructively interfere with each other. Here, this would
require that IGWs excited at the convective boundary and travelling
inward undergo a reflection somewhere close to the centre of the
star. This reflection would generate outward travelling waves that
could constructively interfere with the inward travelling waves to
create standing modes. The absence of standing modes in Figure 13
therefore suggests that only inward moving progressive waves exist
in our simulations. This situation is analogous to that described in
Alvan et al. (2015) for a solar-like star, where low-frequency IGWs
are damped before reaching their reflection point near the centre.
In the solar case, the reflection point is located where the Brunt–
Väisälä frequency 𝑁 becomes equal to the IGW frequency. Here,
𝑁 remains larger than the IGW frequency all the way to the inner
simulation radius, effectively meaning that the waves can only be
reflected at that radius (remember that we use reflective boundary
conditions). But Figures 10 to 12 show that the power contained in
the IGWs is strongly damped as the waves propagate inward, which
most likely explains the absence of reflectedwaves (and, by extension,
of standing modes).

3.4 Internal gravity wave damping

In the previous sections, we have seen how the amplitude of IGWs
drops as they propagate inward (Figures 8–12). What is the cause of
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Figure 13. Power spectra of𝑈𝑟 at 𝑅 = 700Mm (top panel) and 𝑅 = 400Mm
(bottom panel) as a function of the angular degree ℓ and the temporal fre-
quency for X24 (tip setup, 7683 grid). The spectra were obtained by consid-
ering the last 600 dumps of the simulation. Note the different colour scale
between the two panels.

this decrease? In a simulation without any heat diffusion and without
any nonlinear interactions between waves, we expect the luminosity
of each wave (i.e., the kinetic energy transported by wave packets
moving radially at the group velocity𝑈gr,𝑟 ),

𝐿IGW
ℓ,𝜈

= 4𝜋𝑅2𝜌(𝑈2𝑟 +𝑈2ℎ)𝑈gr,𝑟 , (2)

to remain constant as a function of 𝑅. Using the IGW dispersion
relation (e.g., Press 1981), Equation (2) can be expressed more con-
viently as

𝐿IGW
ℓ,𝜈

= 4𝜋𝑅3𝜌𝑈2𝑟
𝑁√︁

ℓ(ℓ + 1)

√︃
1 − 𝜔2/𝑁2, (3)
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Figure 14. Predicted decrease of the velocity of individual IGWs as they
travel inward from the convective boundary in the tip setup. The dashed lines
correspond to the case without radiative diffusion (constant wave luminosity,
Equation 3), while the solid lines show the case with radiation diffusion.
The (ℓ, 𝜈) pairs shown here are typical values for the IGWs observed in our
simulations (see Figure 13).

where 𝜔 = 2𝜋𝜈. In Figure 14, the dashed lines show the decrease
in 𝑈𝑟 predicted using this equation for four different (ℓ, 𝜈) pairs
representative of the IGWs present in our simulations. The IGW
velocities are predicted to only decrease by a factor ∼ 2 between
the convective boundary and 𝑅 = 200Mm, a much more modest
effect than the two orders of magnitude drop observed in Figure 8.
A nonadiabatic effect must therefore be invoked to explain the wave
amplitude damping observed in our simulations.
If radiative diffusion is considered, the wave velocities are damped

by an additional attenuation factor 𝑒−𝜏 , where 𝜏 is analogous to an
optical depth and is given by (Zahn et al. 1997)

𝜏 =
[ℓ(ℓ + 1)]3/2

2

∫ 𝑅

𝑅CB
𝐾
𝑁𝑁2

𝑇

𝜔4

√︄
𝑁2

𝑁2 − 𝜔2
|𝑑𝑟 |
𝑟3

, (4)

where 𝐾 is the thermal diffusivity,

𝐾 =
4𝑎𝑐𝑇3

3𝜅𝑐𝑃𝜌2
, (5)

with 𝑎 the radiation constant, 𝑐 the speed of light, 𝜅 the Rosseland
mean opacity and 𝑐𝑃 the specific heat at constant pressure, and 𝑁𝑇
is the thermal component of 𝑁 ,

𝑁2𝑇 = − 𝑔

𝐻𝑃

𝜕 ln 𝜌
𝜕 ln𝑇

(∇ad − ∇) , (6)

where the temperature gradients have their usual meanings. The solid
lines of Figure 14 show what happens if we include this radiative
damping in our predictions of the IGW velocities. A sharp ∼ 100×
damping is predicted between the convective boundary and 𝑅 ≃
200Mm, which agrees very well with our simulations (compare to
Figure 8).
To verify that radiative damping is indeed the mechanism leading

to the IGW velocity decrease, we have performed two additional
nominal-luminosity RGB tip simulations without radiative diffusion
(X32 and X33, respectively on 7683 and 15363 grids). Heating at the
inner boundary is turned off for these runs, since with𝐾 = 0 this extra
heat would be spuriously trapped in the radiative cavity. Figure 15
compares the spherically averaged velocity profiles of X32 and X33.
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Figure 15. Rms radial and tangential velocity for the tip setup simulations
without radiative diffusion (X32 and X33) at 𝑡 = 629 h. Solid lines are for
X32 (7683 grid) and dashed lines are for X33 (15363 grid). The vertical dotted
lines indicate the location of the convective boundaries.

It is entirely analogous to the bottom panel of Figure 8: the same grid
resolutions are considered and the same simulation setup is used.
The only difference is the omission of radiative diffusion. Clearly,
the IGW velocities still undergo a considerable decrease between the
convective boundary and 𝑅 = 200Mm even if radiative diffusion is
omitted. Remember that only a factor ∼ 2 decrease is expected in
the purely adiabatic case (dashed lines in Figure 14). The stronger
decline must be due to a nonadiabatic effect that we attribute here to
the numerical diffusion of entropy, which mimics radiative diffusion.
This interpretation is supported by the fact that the velocities decline
faster when the grid resolution is lower (compare the dashed and solid
lines in Figure 15), pointing to a numerical effect. Note that we have
also observed numerical heat diffusion in our recent core-convection
simulations (Herwig et al. 2023b).
We stress that the observed velocity damping is not due to numeri-

cal viscosity. If it were the case, we would expect to also see the same
significant difference between both grid resolutions for simulations
where radiative diffusion is included, as this effect operates indepen-
dently from radiative diffusion. But this is not the case: the difference
between the 7683 and 15363 grid resolutions is much smaller when
the simulations include radiative diffusion (Figure 8). This observa-
tion is naturally explained by numerical heat diffusion. Numerical
heat diffusion is hardly noticeable in Figure 8 because radiative dif-
fusion has a considerably larger effect. In contrast, numerical heat
diffusion is very important in the case where 𝐾 = 0, since it becomes
the only mechanism available for entropy diffusion.
Three important conclusions follow from the analysis presented

in this section. First, numerical heat diffusion operates in our sim-
ulations, but is much weaker than radiative diffusion and can there-
fore be ignored. Secondly, radiative damping can naturally explain
most of the decrease of the IGW velocities observed in our sim-
ulations. Thirdly, the spurious behaviour of the flow at the inner
simulation boundary (Section 2.2) can be ignored, since radiative
damping strongly suppresses the IGWs before they reach that radius.

4 MIXING BY INTERNAL GRAVITY WAVES

Now that we have established the main properties of the flow, we
turn to the problem of estimating the mixing enabled by IGWs in
the radiative zone. To do so, we first perform an estimate of the
diffusion coefficient𝐷 based on the vorticities and a simple analytical
prescription (Section 4.1), and we then attempt to measure 𝐷 more
directly by studying the time evolution of a passive fluid added to our
simulations (Section 4.2). As we will see, the second, more robust
method disagrees with the first.

4.1 Estimating the mixing from the vorticity

4.1.1 Theoretical framework

IGWs can cause vertical mixing in the stable layers of stellar interiors
if their horizontal velocity shear is high enough to overcome the
tendency of the fluid to remain stratified. In the adiabatic case (no
heat diffusion), this is expected to take place only if the Richardson
number drops below 1/4,

Ri =
𝑁2

(𝑑𝑈𝑡/𝑑𝑅)2
<
1
4
. (7)

In our RGB stars, Ri > 1/4 throughout the radiative zone (except
within ≃ 0.1𝐻𝑝 from the convective boundary) and no vertical
mixing is therefore expected based on this simple criterion. But
in real stars (and in our simulations), radiative diffusion modifies
Equation (7) and may allow mixing to take place at larger Ri (Zahn
1974). The diffusion coefficient due to IGW shear proposed by Zahn
(1992) is then given by

𝐷 ≃ 𝜂 𝐾
Ri
, (8)

where 𝜂 is a dimensionless parameter of order 0.1 (Prat & Lignières
2013; Prat et al. 2016;Garaud&Kulenthirarajah 2016). In the present
context, this equation can be written as (Section 2.4 of Herwig et al.
2023b)

𝐷 ≃ 0.1𝐾 (∇ ×𝑈)2

𝑁2
, (9)

where we have also assumed that 𝜂 = 0.1.

4.1.2 IGW vorticity scaling for the bump setup

In order to estimate 𝐷 using Equation (9), we need the vorticity
profiles |∇ ×𝑈 | from our simulations. We have already shown those
quantities in Figure 9, but only the vorticity profile for the tip setup
is directly usable. As the RGB bump simulations are driven with a
luminosity that is much higher than the nominal value (see Table 1),
the flow velocities and vorticities are necessarily overestimated.
To extrapolate our RGB bump results to nominal luminosity, we

use our series of 7683 simulations with different heating rates. The
mean vorticity measured in the convection zone is shown in the top
panel of Figure 16, where it can be seen that it follows a 𝐿1/3 scal-
ing law as previously established in the case of core convection in
massive main sequence stars (Herwig et al. 2023b). This is consis-
tent with Figure 4, which shows that the velocities also scale with
𝐿1/3, as observed in previous 3D hydrodynamics simulations (see
Section 2.2). As argued by Herwig et al. (2023b), the fact that both
the velocity and the vorticity scale with 𝐿1/3 requires that the spatial
spectrum in the convection zone is independent of the heating factor.
We find a shallower ∼ 𝐿1/4 scaling when we measure the vorticity

200Mm ≃ 1𝐻𝑃 below the convective boundary (bottom panel of
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Figure 16.Mean vorticity in the convection zone (top panel) and in the stable
layers 200Mm (≃ 1𝐻𝑃) below the convective boundary (bottom panel) as
a function of the boost factor applied to the luminosity. The vorticities are
averaged over the same dumps as in Figure 4. These simulations are all for
the RGB bump setup and a 7683 grid.

Figure 16). Note that the vorticities for the lowest heating factors
should be interpreted with caution as they correspond to very low
velocities (Ma ≲ 10−4 for 𝐿 ≤ 100𝐿★), a regime where the validity
of our simulations is questionable. This explains why the 𝐿 = 10𝐿★
point does not line upwith the trend established at higher luminosities
(see also Figure 4). Note also that this 𝐿1/4 scaling law is not well
defined (e.g., 𝐿1/5 would give a similar fit to the data), but we
assume 𝐿1/4 in what follows. This result strongly differs from the
𝐿2/3 scaling found in Herwig et al. (2023b). As shown in Section 2.2,
we also observe a different scaling of the IGW velocities (𝐿1/3 here
compared to 𝐿2/3 in the core convection case) and in this respect it
is not surprising to also find a different scaling of the vorticities.
However, unlike Herwig et al. (2023b), we do not observe the

same scaling for the velocities and for the vorticities. This implies
that the spatial IGW spectrum changes as a function of heating rate.
Figure A3 shows the |𝑈 | power spectra measured 200Mm below the
convective boundary (as in Figures 4 and 16) for different heating
rates. It reveals that there is indeed a strong dependence of the power
spectra on the heating rate, with more power at low ℓ relative to high
ℓ when the luminosity is increased. This is qualitatively similar to
the findings of Le Saux et al. (2022, Figure 5), but this comparison is
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Figure 17. Estimate of the diffusion coefficient in the radiative zone due
to IGW mixing based on the Zahn formula (Equation 9). Those results are
based on the vorticities measured in X22 and X26. For the bump setup, the
𝐿1/4 scaling law (Figure 16) was used to extrapolate the vorticity to nominal
luminosity. For each setup, a circles marks the location of the convective
boundary and a horizontal arrow indicates the radial extent of half a pressure
scale height. The thin black lines correspond to the best fit to 𝐷 assuming
the double-exponential convective boundary mixing prescription of Equa-
tion (10). The values of the 𝑓 parameters are given next to each segment.

misleading for at least two reasons. First, the IGW spectra measured
in our simulations (Figure 13) are very different from those reported
in Le Saux et al. (2022). Their spectra show well-defined IGW stand-
ing modes, but also contain a significant amount of power at low
frequencies and over all wavenumbers. Secondly, the spurious mi-
gration of the convective boundary in our simulations (Section 2.2)
operates more rapidly when the heating rate is increased, meaning
that the spectra shown in Figure A3 are not all determined at the
same radius since they are measured at a fixed distance from the
convective boundary. Moreover, this implies that the IGWs are not
excited at the same location in the star. Ideally, we should compare
the wave spectra and the IGW vorticities at the same radius and for
simulations where the convective boundary is at the same location.
This cannot be accomplished with our current simulations. Using
earlier dumps for high-𝐿 runs where the boundary moves rapidly is
not possible because the boundary migrates before the dynamics has
the time to reach a steady state. We are therefore forced to conclude
that the scaling laws that we have determined for the IGW velocities
and vorticities in the RGB bump setup are most likely incorrect. In
the absence of any suitable alternative, we will nevertheless use them
in what follows. Fortunately, this problem does not affect our RGB tip
simulations, where no extrapolation to low luminosities is required,
and it does not impact any of the conclusions of this work.

4.1.3 Diffusivity estimates

Equipped with our scaling relation for |∇ ×𝑈 | in the radiative zone
of the bump setup, we can now estimate 𝐷 by virtue of Equation (9)
for both setups. Figure 17 shows the resulting diffusivity profiles.
The magnitude of 𝐷 in the stable layers is quite significant and
suggests that IGW mixing could alter the evolution of upper RGB
stars. For reference, at the bump luminosity, a diffusion coefficient
of ∼ 109 cm2 s−1 at the base of the envelope is needed to explain the
observed RGB extra mixing (Denissenkov & VandenBerg 2003).
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The diffusion coefficient profiles of Figure 17 follow a distinctive
double-exponential decay near the convective boundary, a conclusion
that does not depend on the uncertain RGB bump vorticity scaling
law.𝐷 initially decreases rapidly close to the radiative–convective in-
terface but then exhibits a shallower decay further inside the radiative
zone. This behaviour is reminiscent of the prescription used by Bat-
tino et al. (2016), and based on the stellar hydrodynamics simulations
of Herwig et al. (2007), to model mixing below the convective en-
velopes of thermally pulsating asymptotic giant branch (AGB) stars
during the third dredge-up. With this prescription, 𝐷 at a distance 𝑧
below the convective boundary is given by

𝐷 (𝑧) =
{
𝐷0 exp

[
−2𝑧/( 𝑓1𝐻𝑃,0)

]
𝑧 ≤ 𝑧2

𝐷2 exp
[
−2(𝑧 − 𝑧2)/( 𝑓2𝐻𝑃,0)

]
𝑧 > 𝑧2,

(10)

where

𝐷2 = 𝐷0 exp
[
−2𝑧2/( 𝑓1𝐻𝑃,0)

]
, (11)

𝐷0 is the diffusion coefficient at the convective boundary,𝐻𝑃,0 is the
pressure scale height at the boundary, and 𝑓1𝐻𝑃,0 and 𝑓2𝐻𝑃,0 are the
overshoot scale heights (Freytag et al. 1996; Herwig 2000). We show
in Figure 17 the values of 𝑓1 and 𝑓2 obtained by fitting Equation (10)
to the 𝐷 profiles for the first 150Mm below the convective boundary.
If the Zahn formula is correct, if 𝜂 remains constant from the bump
luminosity to the tip of the RGB, and if 𝜂 is constant throughout the
radiative zone (we return to this point in Section 4.2), then Figure 17
implies that the 𝑓 values change throughout the RGB evolution and
that a single prescription cannot be used to describe all the upper
RGB evolution.
Battino et al. (2016) adjusted the free parameters of Equation (10)

in order to reproduce the IGW mixing calculations of Denissenkov
& Tout (2003), based on the IGW mixing prescription of Garcia
Lopez & Spruit (1991). The extra mixing generated with this simple
model was shown to be able to generate a 13C pocket in the radiative
zone of AGB stars that is large enough to obtain 𝑠-process yields
that are compatible with observations. While promising, this mixing
prescription has not yet been verified with multi-dimensional hydro-
dynamics simulations of the stable layers below a convective enve-
lope. In this context, our results shown in Figure 17 offer additional
support for the double-exponential prescription used in AGB mod-
els. While the radial stratification of a thermally pulsating AGB star
obviously differs from that of an upper RGB star, there are significant
similarities (e.g., comparable luminosities, analogous geometries). It
is therefore encouraging to recover a double-exponential profile in
our simulations, especially since the 𝑓 values we find are approxi-
mately similar to those assumed by Battino et al. (2016, 𝑓1 = 0.014
and 𝑓2 = 0.25).

4.2 Constraints on the diffusivity from the time evolution of a
tracer fluid

The diffusivity estimates presented in the previous section are far
from robust. Apart from concerns regarding the RGB bump vorticity
scaling law, their validity depends on the correctness of the Zahn
formula (Equation 9) and on the assumed 𝜂 value. Here, we attempt
to measure the mixing more directly using a second passive fluid.
PPMstar follows species advection using the high-order PPB scheme
(Woodward et al. 2015). In setups that include a composition gradient
(e.g., Herwig et al. 2023b), a passive dye cannot be directly inserted in
the simulations as PPMstar is currently a two-fluid code. Fortunately,
our RGB setups have a uniform composition and a second fluid with
the same mean molecular weight as the first fluid can be added to our

base states. This is equivalent to adding a passive tracer. It has no
effect on the flow but allows us to directly measure species mixing.
We initialize the concentration of this second fluid as a series

of spherical shells with Gaussian radial profiles. The expectation is
that shear-induced IGW mixing will spread those Gaussian profiles
in the stable layers. The diffusion coefficient can then be recovered
by measuring the rate at which the fractional volume of the second
fluid at the peak of each Gaussian (FVmax) decreases with time. By
applying the diffusion equation to a Gaussian, one can show that the
diffusion coefficient can be calculated as

𝐷 = − 𝑑FVmax/𝑑𝑡
FVmax,0

𝜎20 , (12)

where 𝑑FVmax/𝑑𝑡 is the rate atwhich the FVat the peak of aGaussian
decreases, FVmax,0 is its initial value, and 𝜎0 is the initial standard
deviation of the Gaussian. Note that Equation (12) assumes that
the width of the Gaussian remains constant, which is an excellent
approximation for the relatively short time scales over which our
simulations are performed.
Previous experience has taught us that the grid resolutions we have

been using so far in this work (7683 and 15363) are insufficient to
measure diffusion coefficients with this technique. In fact, in Her-
wig et al. (2023a) we show that in massive main-sequence stars the
measured 𝐷 steadily decreases with increasing grid resolution due to
numerical entropy diffusion up to at least 26883. We therefore jump
directly to a very high 28803 resolution for this analysis (run X30, see
Table 1), and any mixing measured at that resolution should be in-
terpreted as an upper limit given the results of Herwig et al. (2023a).
The setup for this new run is identical to that described above for the
tip RGB X26 run, except that (1) FV Gaussians with 𝜎0 = 8.3Mm
(corresponding to a full width at half maximum of ≃ 25 grid cells)
are placed 100Mm apart in the stable layers, (2) the convective en-
velope now extends further out to 𝑅max = 1100Mm (we can afford
this extension given the larger 28803 grid resolution), (3) we have
disabled heat conduction at the inner and outer boundaries. This last
change was made after we realized that simultaneously cooling the
top layers and allowing heat to escape through radiative diffusion
at the outer boundary was effectively cooling the star by more than
1 𝐿★. By omitting radiative diffusion at the boundary, we can now
precisely set the luminosity to 1 𝐿★ by cooling the upper layers at
that exact rate. Due to the large computational cost of the 28803 grid,
X30 ran for a shorter total duration than other simulations presented
so far (552 h of star time, see Table 1). Nevertheless, as we will show
below, this is sufficient to establish useful constraints on 𝐷.
Figure 18 shows the evolution of the height of the two Gaussians

closest to the convective boundary (at 𝑅 = 450 and 550Mm), where
IGW mixing is expected to be the strongest (Figure 17). The ampli-
tude of the Gaussians was recovered by fitting the radial FV profiles
with a Gaussian. Initially, at 𝑡 ≲ 250 h, FVmax fluctuates a lot. This is
entirely attributable to the initial transient at the beginning of our sim-
ulation and for this reasonwe discard the 𝑡 ≤ 300 h portion of the time
series from the rest of our analysis. If strong IGWmixingwas present,
we would expect to observe a decrease of FVmax for 𝑡 ≥ 300 h. At
𝑅 = 550Mm, we do not see any evidence for such decline (top
panel of Figure 18). The Kendall rank correlation coefficient be-
tween FVmax and 𝑡 is consistent with the null hypothesis where there
is no dependence of FVmax on 𝑡 (𝑝-value of 0.057). Similarly, a lin-
ear fit to the data gives a positive but statistically insignificant slope,
𝑑FVmax/𝑑𝑡 = (2.6 ± 1.0) × 10−10 s−1 (dashed line in Figure 18).
From this linear fit, we can extract a lower limit on 𝑑FVmax/𝑑𝑡
by taking the 5-sigma lower limit, 𝑑FVmax/𝑑𝑡 > −2.5 × 10−10 s−1
(dotted line in Figure 18). Using Equation (12), we find that this cor-
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Figure 18. Time evolution of the fractional volume of the peak of the tracer
fluid Gaussians inserted at 𝑅 = 550Mm (top panel) and at 𝑅 = 450Mm
(bottom panel) in run X30. The dashed lines are linear fits for 𝑡 ≥ 300 h
and the dotted line shows a lower limit on 𝑑FVmax/𝑑𝑡 (see text). Note the
different vertical scales for both panels.

responds to log𝐷 (cm2 s−1) < 8.2. In contrast, a tentative decline of
FVmax is visible for the 450Mm Gaussian thanks to the lower noise
level in the FVmax time series (compare both panels of Figure 18).
We find a Kendall rank correlation coefficient of 0.48, significantly
different from 0 with a 𝑝-value of 10−15. This time, a linear fit to
the data yields 𝑑FVmax/𝑑𝑡 = −(1.03 ± 0.11) × 10−10 s−1, which
allows a tentative measurement of log𝐷 (cm2 s−1) = 7.80 ± 0.05.
It is possible that this downward trend is only temporary and that a
longer simulation would show a stabilization of FVmax. As for the
Gaussians located at smaller radii (250 and 350Mm), we find that
they do not maintain their Gaussian shapes to a sufficiently high
level of accuracy to allow a precise determination of FVmax. Part of
the problem is that the fluctuations of FV at smaller radii are much
smaller (as can be inferred from Figure 18). This means that FVmax
must be determined with an increasing precision, making even small
departures from perfect Gaussianity problematic. The artifacts intro-
duced by the inner boundary are also a consideration at those small
radii.
In Figure 19, we compare our estimates of 𝐷 described in the pre-

vious paragraph to𝐷 calculated using Equation (9) and the vorticities
measured in X30. The latter 𝐷 estimates differ from that previously
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Figure 19. Estimate of the mixing coefficient based on Equation (9) and the
vorticities measured in X30 at dump 700 (𝑡 = 552 h, solid brown line), and
measurements of the diffusion coefficient based on the analysis of the tracer
fluid Gaussians (squares). The formal error on the𝐷measurement at 450Mm
is smaller than the size of the symbol.

shown in Figure 17, which can be explained by the higher grid res-
olution of X30, the different boundary conditions, and the slightly
larger convective envelope. The main takeaway from Figure 19 is
that we can rule out IGW mixing on the scale predicted by Zahn’s
formula with 𝜂 = 0.1. There is a factor 6 discrepancy between both
𝐷 estimates at 450Mm and a factor ≳ 25 discrepancy at 550Mm.
The 𝜂 = 0.1 value we have assumed so far is only a rough order
of magnitude estimate based on existing numerical simulations. A
different value of 𝜂 is certainly possible. For instance, Garaud &
Kulenthirarajah (2016) recommend 𝜂 ∼ 0.02, which would improve
the agreement between both estimates in Figure 19. Furthermore, ex-
isting 𝜂 determinations are still tentative given that they are based on
low Reynolds number numerical simulations (Garaud 2021). Taken
at face value, our FV-based 𝐷 determinations also suggest that 𝜂 is
not constant through the stable layers: the 450Mm Gaussian implies
𝜂 ∼ 0.02 and the 550Mm implies 𝜂 ≲ 0.004. Previous numerical
simulations have found a dependence between the turbulent Reynolds
number and the value of 𝜂 (Prat et al. 2016). This may be related to
what we observe here.
In any case, the analysis of the time evolution of the Gaussians

presented in this section represents a much more direct assessment
of the efficiency of IGW mixing, and the results from this anal-
ysis take precedence over those presented in the previous section
based on the application of Zahn’s formula. Given that we find that
𝐷 (cm2 s−1) ∼ 108 at most close to the boundary (remember that
the finite grid resolution implies that the measured 𝐷 at 450Mm is
formally an upper limit, Herwig et al. 2023a), our hydrodynamics
simulations a priori suggest that IGW mixing is not an important
mixing mechanism in the radiative zones of RGB stars and that it
cannot provide the missing extra mixing required to explain upper
RGB surface compositions. A diffusion coefficient of the order of
109 cm2 s−1 throughout the upper RGB would be needed, and here
we do not even reach that value at the RGB tip, where the luminosity
is highest and IGW mixing is expected to be most efficient. That be-
ing said, we will see in Section 5 that this conclusion is not definitive
and that in a real RGB star IGW mixing may be more efficient.
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Figure 20. Centre-plane slice rendering of the vorticity magnitude for run
X25 at dump 430 (𝑡 = 1140 h). As in Figure 7, |∇ ×𝑈 | increases when going
from dark blue to turquoise, yellow, red, and dark red. The inner 120Mmwas
masked to remove artifacts introduced by the inner simulation boundary.

5 EFFECT OF THE ENVELOPE SIZE

To document the effect of including a limited portion of the con-
vective envelope in our simulations, we performed an additional run
(X25) where we extended our setup to 𝑅max = 1800Mm instead
of our fiducial 900Mm. We performed this run on a 15363 grid,
meaning that it has the same resolution as X24 (performed on a
7683 grid with 𝑅max = 900Mm) in the region where both grids
overlap. By comparing X24 and X25, we can therefore assess the
impact of including a larger envelope while controlling for the grid
resolution. Figure 20 shows a vorticity magnitude rendering of X25.
As expected, larger eddies are able to develop in this extended con-
vective envelope. Throughout the simulation, the flow is dominated
by just a few large cells (three are clearly visible in Figure 20),
which is to be contrasted with the many small cells that characterize
the rest of our simulations (Section 3.1). Accordingly, we find that
the 𝑈𝑟 power spectrum in the convective envelope now exhibits a
Kolmogorov ℓ−5/3 scaling down to ℓ = 2 (Figure A4). Extending
the envelope even further out would presumably allow a single large
dipole mode to develop. However, for a computationally feasible grid
size, this would result in a grid resolution that is too poor to properly
characterize IGWs in the radiative zone. This conundrum could be
resolved in the future by using a nested grid with smaller cells in the
central radiative layers and larger cells in the convective envelope.
This capability is not yet implemented in PPMstar. For now, the ex-
tended envelope of X25 is enough to document the sensitivity of the
IGWs on the size of the convective envelope; we postpone a proper
convergence study to future work.
How does the development of larger convective cells affect the

properties of the IGW-dominated flow in the radiative zone? Fig-
ure 21 shows that the flow is 1.5 − 2 times faster in the convection
zone with the extended envelope setup. Those faster convective mo-
tions in turn excite a more rapid flow below the convective boundary,
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Figure 21. Rms radial velocity (blue), rms tangential velocity (orange) and
vorticity magnitude (grey) for X24 (small convective envelope, solid lines)
and X25 (large convective envelope, dashed lines) at dump 400. The vertical
dotted line indicates the location of the convective boundary.

with |𝑈𝑟 | and |𝑈𝑡 | up to ≃ 4 times faster in the radiative zone when
a larger envelope is used (see also Figure A4). The vorticities are
naturally also enhanced by up to a factor ≃ 3. Note however that the
increase in vorticity is less pronounced in the outermost radiative
layers: |∇ ×𝑈 | grows by only ≃ 50% at 0.5𝐻𝑃 below the convec-
tive boundary. This vorticity enhancement would directly impact our
Zahn diffusion coefficient estimate (Equation 9) and increase it by
up to one order of magnitude (the radiative diffusivity 𝐾 and the
Brunt–Väisälä frequency 𝑁 in the stable layers are not affected by
the inclusion of a larger envelope). The enhanced vorticity would
also conceivably affect our constraints on 𝐷 based on the analysis of
the time evolution of the tracer fluid Gaussians (Section 4.2). Future
work should focus on this aspect of the problem. We are forced to
conclude that our tentative measurement of 𝐷 in Section 4.2 should
be interpreted as a lower limit, as simulations including the full en-
velope would most likely result in more efficient mixing. Hence, we
cannot conclusively rule out the idea that IGW mixing on the upper
RGB is an important mixing mechanism and possibly at least part of
the solution to the extra mixing problem.

6 THE CONVECTIVE BOUNDARY

We now leverage the exceptionally high resolution (28803) of our
X30 simulation to examine the properties of the convective boundary.
Because radiative diffusion at the outer boundary has been omitted in
X30 (see Section 4.2), heat is removed from the star at the same rate
as it is injected. As a result, the Schwarzschild boundary does not
migrate as in previous runs, therefore enabling a meaningful study
of the boundary region.
Figure 22 tracks the evolution of the spherically averaged tem-

perature gradients and FV profile in the boundary region (for refer-
ence, the evolution of the Brunt–Väisälä frequency is also given in
Figure A5). In Section 4.2, we analyzed the time evolution of the
FV Gaussians located well into the radiative zone, at 𝑅 = 450Mm
and 𝑅 = 550Mm. X30 also includes an FV Gaussian centered at
𝑅 = 650Mm, very close to the convective boundary. The ingestion
of this Gaussian into the convective envelope provides a useful diag-
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Figure 22. Evolution of the spherically averaged temperature gradient ∇
in run X30 (solid lines). The intersection of the adiabatic (∇ad, dashed
lines) and radiative (∇rad, dashed-dotted lines) temperature gradients is the
Schwarzschild boundary. The convective boundary, defined here as the radius
where the maximum 𝑈𝑡 gradient is reached, is indicated by a circle. The
dotted lines show the evolution of FV (see text). The establishment of a pen-
etration zone beyond the formal Schwarzschild boundary can be observed.

nostic for the extent of the fully mixed envelope. There are several
things to note in Figure 22:

• While the formal Schwarzschild boundary is virtually station-
ary, the dynamic convective boundary (defined, as previously in this
work, as the location of the maximum 𝑈𝑡 gradient) migrates inward
(circles in Figure 22);

• The temperature gradient in the region between the
Schwarzschild and convective boundaries departs from the∇rad value
expected in the radiative zone and instead gradually approaches the
adiabatic gradient ∇ad;

• The fully mixed region (i.e., the region where FV is constant)
grows past the Schwarzschild boundary.

All those properties point to the formation of a convective pene-
tration zone. Formally, a penetration zone is a region where both
entropy and composition are mixed by convective motions beyond
the Schwarzschild boundary (Zahn 1991; Hurlburt et al. 1994; Brum-
mell et al. 2002; Anders et al. 2022b). Convective penetration below
a convective envelope has been observed in 3D hydrodynamics sim-
ulations of a Sun-like star (Brun et al. 2011) and of a 5𝑀⊙ star at the
end of central He burning (Viallet et al. 2013), two examples where
the geometry is similar to that of the RGB case. While the limited
length of our simulation does not allow the establishment of a fully
mixed, stationary penetration zone, it is clear from Figure 22 that
such a region is in the process of being formed. The thermal diffu-
sion lengthscale

√
𝐾𝑡 over the full simulation (𝑡 = 552 h) is≃ 50Mm,

which explains why the penetration zone had the time to build up but
has not yet reached a steady state.
To visualize this nascent penetration zone, we show in Fig-

ure 23 renderings of the vorticity magnitude and radial velocity
in the boundary region. The outer white circular arc marks the
Schwarzschild boundary. Turbulent motions visible in the vorticity
rendering extend well beyond this radius and up to the dynamic con-
vective boundary (identified by the inner white circular arc): this is
the convective penetration zone. In fact, this is very similar to the be-
haviour observed byAnders et al. (2022b) in their 3D hydrodynamics
simulations performed in a simplified plane-parallel geometry (com-

pare the left panel of Figure 23 to the left panel of their Figure 1).
While the penetration zone is not fully established, it is still useful to
compare its extent to existing observational constraints. We can infer
from Figures 22 and 23 that after 550 h of simulation time, the pene-
tration zone extends ∼ 0.2𝐻𝑃 beyond the Schwarzschild boundary.
Interestingly, it has been shown that the inclusion of a ∼ 0.25𝐻𝑃
overshooting below the Schwarzschild boundary can eliminate the
discrepancy between the observed and predicted location of the RGB
bump (Cassisi et al. 2011; Fu et al. 2018; Khan et al. 2018).
The renderings of Figure 23 reveal more than just the formation

of a penetration zone. We also see a large plume moving inward
(remember that blue colours stand for inward motions in our𝑈𝑟 ren-
derings) and traversing the spherically-averaged dynamic convective
boundary to reach the stable, IGW-dominated interior. This points
to the presence of an overshoot zone beyond the penetration zone,
where the convective motions are too weak to efficiently mix entropy
and composition. This is in line with the schematic picture discussed
by Zahn (1991) and recently illustrated by Anders et al. (2022a, Fig-
ure 1; see also Figure 14 of Hotta 2017). In the vorticity rendering
of Figure 23, we can even see how the intrusion of this plume in
the radiative region excites IGWs. On each side of the plume, there
are structures that form an angle with respect to the almost circular
patterns that otherwise dominate the vorticity rendering of the stable
layers. Those structures, indicated by two arrows in Figure 23, are
IGWs excited by the intruding plume (this is most clearly seen in the
movie). This suggests that penetrative plumes are an important wave
excitation mechanism, consistent with our findings of Section 3.3
based on the IGW power spectra. That being said, it is possible that
in a real RGB star, with a much large convective envelope, the dipolar
global flow morphology prevents the formation of such plumes.
The evolution of the FV profile in Figure 22 can be used to infer the

diffusion coefficient close to the convective boundary. As in Jones
et al. (2017), we take the FV radial profiles at different times and
invert the 1D diffusion equation to determine the profile 𝐷 (𝑅) that
can reproduce the observed change. The resulting 𝐷 (𝑅) is shown as
a black dashed line in Figure 24. Our diffusion coefficient inversion
technique only works if the gradient of FV is not zero, meaning that
we cannot measure 𝐷 further out in the envelope than what is shown
in Figure 24. Note also that this method cannot be applied in the
stable layers, where diffusion is much slower and the approach used
in Section 4.2 is the best option. In Figure 24, we show with a grey
dashed line the diffusion coefficient predicted by the MLT formula

𝐷MLT =
1
3
𝑈𝛼𝐻𝑃 , (13)

where we have assumed that 𝑈 corresponds to the total velocity
amplitude in the PPMstar simulation and where we have fixed 𝛼 =

0.75 in order to fit the measured diffusivity (black dashed line) in
the envelope far from the Schwarzschild boundary. As previously
observed in other hydrodynamics simulations, a constant 𝛼 value
leads to an overestimation of 𝐷 close to the boundary, a problem that
can be solved by reducing themixing length near the boundary (Jones
et al. 2017; Herwig et al. 2023b). We found that a good prescription
for 𝛼 is given by

𝛼 = min(0.75, 1.8Δ𝑅 + 0.08), (14)

where

Δ𝑅 =
𝑅 − 𝑅SB
𝐻𝑃

, (15)

with 𝑅SB the radius of the Schwarzschild boundary. This yields an
excellent fit to the measured diffusivity in the convection zone (red
line in Figure 24 for 𝑅 ≥ 𝑅SB). The simpler prescription suggested by
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Figure 23. Centre-plane slice rendering in the convective boundary region of the vorticity magnitude (left panel) and radial velocity component (right panel)
for run X30 at dump 690 (𝑡 = 544 h). The colours have the same meanings as in Figures 6 and 7. In each panel, the inner circular arc marks the location of
the spherically averaged convective boundary, defined here as the radius where the maximum 𝑈𝑡 gradient is reached. The outer circular arc designates the
Schwarzschild boundary. The region between the two circular arcs is the nascent penetration zone. A large plume traversing the penetration zone and intruding
into the stable layers excites IGWs (indicated by two arrows). High-resolution movies are available at https://www.ppmstar.org.

Jones et al. (2017, Equation 4) and the exponential parametrization
of Herwig et al. (2023b, Equation 9) cannot reproduce the measured
diffusivity to a comparable degree of accuracy.
To extend our diffusivity model below the Schwarzschild bound-

ary, we use the double- 𝑓 prescription of Equation 10.Wefind that this
particular convective boundary mixing model cannot simultaneously
match the measured diffusivity in the penetration zone (black dashed
line for 𝑅 < 𝑅SB in Figure 24) and in the stable layers (square sym-
bols as in Figure 19). The best overall match is given by 𝑓1 = 0.06,
𝑓2 = 0.9 and 𝐷2 = 1.7 × 108 cm2 s−1 (𝑧2 = 105Mm = 0.41𝐻𝑃,0),
and is displayed as a red line for 𝑅 < 𝑅SB in Figure 24. This sim-
ple diffusivity model, with a modified mixing length in the unstable
layers and a double-exponential profile below 𝑅SB, can be easily
implemented in 1D stellar evolution codes, with the caveats that it
underestimates mixing in the penetration zone and that it may not
apply to the rest of the RGB evolution.

7 CONCLUSION

We have presented the first 3D hydrodynamics simulations of IGW
excitation and propagation in RGB stars. These simulations clearly
show that a rich spectrum of IGWs is generated in the radiative

zones of low-mass upper RGB stars (Section 3). By analysing the
time evolution of a tracer fluid, we measured the mixing enabled by
IGWs in the radiative interior (Section 4). In our simulations, we
find that IGW mixing is too weak to explain the missing RGB extra
mixing, but we cannot rule out that this mixing mechanism is much
more efficient in real RGB stars. In fact, our simulations only include
a limited portion of the convective envelope, and we have shown
how this probably leads to an underestimation of IGW mixing in
the radiative zone (Section 5). This is the most critical aspect of our
simulations to be improved in future work. We have also studied the
properties of the envelope convective boundary (Section 6).We found
evidence for the establishment of a convective penetration zone and
for the excitation of IGWs in the stable layers by plumes that traverse
the penetration zone and encroach into the radiative zone. We also
provided a simple prescription for the diffusion coefficient in the
boundary region.

Promisingly,we also find that the vorticity profilesmeasured below
the convective boundary in our RGB simulations yield support to the
idea that IGWmixingmay be responsible for the formation of the 13C
pocket in AGB stars. This should be further studied with dedicated
AGB hydrodynamics simulations.

MNRAS 000, 1–19 (2022)

https://www.ppmstar.org


18 S. Blouin et al.

400 500 600 700 800 900
R (Mm)

107

109

1011

1013

1015

D
 (c

m
2
s

1 )

Convective boundary

Schwarzschild boundary

0.5 HP

FVmax

MLT

FV inversion

Double-f model and
modified mixing length

Figure 24. Diffusion coefficient measured in the X30 simulation by inverting
the FV profile evolution (black dashed line) and by tracking the FV Gaussian
spreading as described in Section 4.2 (black squares). The grey dashed line
is an MLT estimate of 𝐷 assuming 𝛼 = 0.75. The red line is a simple
model that assumes an MLT diffusivity with a variable 𝛼 (Equation 14) in
the unstable layers and a double-exponential decay below the Schwarzschild
boundary ( 𝑓1 = 0.06 and 𝑓2 = 0.9, see text for details). Two circles mark the
locations of the Schwarzschild and convective boundary (defined as before as
the location where the maximum𝑈𝑡 gradient is reached).
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APPENDIX A: SUPPLEMENTARY FIGURES

This Appendix contains additional figures that are all referenced in the main
text.
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Figure A1. Rms radial and tangential velocity for the bump (top panel, X14
and X22) and tip setups (bottom panel, X24 and X26) at 𝑡 = 672 h (same
time as in Figure 6) in terms of Mach numbers. Profiles calculated from runs
on a 7683 grid are shown as solid lines; those from 15363 grids are shown as
dashed lines. The vertical dotted lines indicate the location of the convective
boundaries, determined by finding the location of the maximum𝑈𝑡 gradient
as in Jones et al. (2017). Note that the X14 and X22 simulations shown on
the top panel were driven with 1000× the nominal luminosity (see Table 1)
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Figure A2. Power spectrum of |𝑈 | in the radiative (𝑅 = 400Mm) and
convective (𝑅 = 700Mm) zones for our RGB tip simulations at different
grid resolutions (see legend). The spectra were computed by averaging over
dumps 410 to 510.
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Figure A3. Power spectra of |𝑈 | 200Mm below the convective boundary for
RGB bump simulations with different heating rates (see legend). The same
dumps as in Figures 4 and 16 are used. To facilitate comparison, all spectra
were normalized at ℓ = 1.
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Figure A4. Power spectrum of |𝑈 | in the radiative (𝑅 = 400Mm) and
convective (𝑅 = 700Mm) zones for our RGB tip simulations with different
envelope radial extents (see legend). The spectra were computed by averaging
over dumps 410 to 510.
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Figure A5. Evolution of the Brunt–Väisälä frequency in run X30 as the
penetration zone is established. The convective boundary is indicated by a
circle.
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